HOMEWORK 13 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

SECTION 6.1: AREAS BETWEEN CURVES

6.1.1.
$$\int_0^4 (5x - x^2) - x dx = \int_0^4 4x - x^2 dx = \boxed{\frac{32}{3}}$$

6.1.3.
$$\int_{-1}^{1} e^{y} - (y^{2} - 2)dy = e^{-1} + \frac{10}{3}$$

6.1.13. $\int_{-3}^{3} (12 - x^2) - (x^2 - 6) dx = \int_{-3}^{3} 18 - 2x^2 dx = \boxed{72}$ (points of intersection are $x = \pm 3$)

6.1.21.
$$\int_{-1}^{1} (1 - y^2) - (y^2 - 1) dy = \int_{-1}^{1} 2 - 2y^2 dy = \frac{8}{3}$$
 (points of intersection are $y = \pm 1$)

6.1.40.
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} 1 - |y| - 2y^2 dy = \int_{-\frac{1}{2}}^{0} 1 + y - 2y^2 dy + \int_{0}^{\frac{1}{2}} 1 - y - 2y^2 dy = -\frac{7}{24} + \frac{7}{24} = \frac{7}{6}.$$

(to find the points of intersection, solve $2y^2 = 1 - |y|$, and split up into the two cases $y \ge 0$ and y < 0). Also, it might help to notice that your function is even, so you really only care about the case where $y \ge 0$.

6.1.41. Here
$$n = 5$$
, and $D \approx 2(f(1) + f(3) + f(5) + f(7) + f(9)) = 2(2 + 6 + 9 + 11 + 12) = 80$, where $f(x) = v_K - v_C$ (notice that $v_K \ge v_C$ throughout the race!)

6.1.49. The first region has area equal to $\int_0^b 2\sqrt{y}dy = \frac{4}{3}b^{\frac{3}{2}}$ (notice that we're integrating with respect to y, and $y = x^2 \Leftrightarrow y = \pm \sqrt{x}$. Also, draw a picture to see why we have an extra factor of 2 in the integral). The second region has area equal to $\int_b^4 2\sqrt{y}dy = -\frac{4}{3}b^{\frac{3}{2}} + \frac{32}{3}$, so to solve for b, we need to set those two areas equal:

$$\frac{4}{3}b^{\frac{3}{2}} = -\frac{4}{3}b^{\frac{3}{2}} + \frac{32}{3} \Leftrightarrow \frac{8}{3}b^{\frac{3}{2}} = \frac{32}{3} \Leftrightarrow b^{\frac{3}{2}} = 4 \Leftrightarrow b = 4^{\frac{2}{3}}$$

Date: Monday, May 2nd, 2011.

Section 6.2: Volumes

6.2.3. Disk method,
$$K = 0$$
, $\int_{1}^{2} \pi \left(\frac{1}{x}\right)^{2} dx = \boxed{\frac{\pi}{2}}$

6.2.6. Disk method,
$$K = 0$$
, $x = e^y$, so $\int_1^2 \pi(e^y)^2 dy = \int_1^2 \pi(e^{2y}) dy = \boxed{\frac{\pi}{2}(e^4 - e^2)}$

6.2.13. Washer method, K = 1, Outer = (3) - 1 = 2, Inner $= (1 + \sec^2(x)) - 1 = \sec^2(x)$, Points of intersection $\pm \frac{\pi}{3}$, so:

$$\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \pi(2^2 - \sec^2(x)) dx = \pi(4\frac{2\pi}{3} - \tan(\frac{\pi}{3}) + \tan(\frac{-\pi}{3})) = \pi(\frac{8\pi}{3} - 2\sqrt{3}) = 2\pi\left(\frac{4}{3}\pi - \sqrt{3}\right)$$

6.2.17. Washer method, K = -1, and notice $y = x^2 \Leftrightarrow x = \sqrt{y}$ (in this case $x \ge 0$), Outer $= \sqrt{y} - (-1) = \sqrt{y} + 1$, Inner $= y^2 - (-1) = y^2 + 1$, Point of intersection y = 0 and y = 1, so:

$$\int_0^1 \pi (\sqrt{y} + 1)^2 - (y^2 + 1)^2 dy = \frac{29\pi}{30}$$

6.2.49. Disk method, K = 0, $\int_0^h \pi \left(r - \frac{r}{h}x\right)^2 dx = \left[\frac{\pi}{3}r^2h\right]$ (the point is to rotate the usual cone by 90° so that its height lies on the x-axis, and the base disk lies on the y-axis., and this it's easy to use the disk method!)

6.2.51. Disk method, K = 0, $\int_{r-h}^{r} \pi(\sqrt{r^2 - y^2})^2 dy = \int_{r-h}^{r} \pi(r^2 - y^2) dy \left[\pi h^2 \left(r - \frac{1}{3}h \right) \right]$ (use the fact that $x^2 + y^2 = r^2$, and solve for y)

6.2.57. $A(x) = \frac{1}{2}L^2 = \frac{1}{2}(\frac{b}{\sqrt{2}})^2 = \frac{1}{4}b^2 = \frac{1}{4}(2y)^2 = y^2 = \frac{36-9x^2}{4} = 9 - \frac{9}{4}x^2$ (here L is the length of a side of the triangle, and b=2y is the hypotenuse) so $V=\int_{-2}^2 \left(9-\frac{9}{4}x^2\right)dx = \boxed{24}$ (you get the endpoints by setting y=0 in $9x^2+4y^2=36$)

6.2.67. The point is to draw a very good picture! Make one sphere have center $(0, -\frac{r}{2})$ in the xy-plane and the other one have center $(0, \frac{r}{2})$. Then the volume is really the volume of two pieces of equal volume, let's focus on $x \ge 0$ only! Then, using the disk method, you get:

$$V = 2\int_0^{\frac{r}{2}} \pi \left(\sqrt{r^2 - \left(x + \frac{r}{2}\right)^2} \right)^2 dx = 2\pi \int_0^{\frac{r}{2}} r^2 - \left(x + \frac{r}{2}\right) dx = \frac{5\pi r^3}{12}$$

(here we used the fact that $(x + \frac{r}{2})^2 + y^2 = r^2$, and solved for y. This looks a bit strange, but remember that your height is really on the left sphere, not on the right one!)

6.2.70. This is **much** easier with the shell method of section 6.3. Here K=0, $f(x)=\sqrt{R^2-x^2}$ (since $x^2+y^2=R^2$), and so $\int_r^R 2\pi x \sqrt{R^2-x^2} dx = \boxed{\frac{2\pi}{3} \left(R^2-r^2\right)^{\frac{3}{2}}}$ (use the substitution $u=R^2-x^2$)

SECTION 6.3: VOLUMES BY CYLINDRICAL SHELLS

- **6.3.2.** $\int_0^{\sqrt{\pi}} 2\pi x \sin(x^2) dx = \boxed{2\pi}$ (use the substitution $u = x^2$)
- **6.3.13.** Shell method: $K=0, |y-0|=y, \text{ Outer}=2, \text{ Inner}=1+(y-2)^2, \text{ Points of intersection } y=1, y=3, \text{ so } \int_1^3 2\pi y (2-(1+(y-2)^2)) dy = \int_1^3 2\pi y (1-(y-2)^2)) dy = \left\lceil \frac{16\pi}{3} \right\rceil.$
- **6.3.15.** Shell method: K = 2, |x 2| = 2 x, Outer $= x^4$, Inner = 0, $\int_0^1 2\pi (2 x)(x^4) dx = \boxed{\frac{7\pi}{15}}$
- **6.3.19.** Shell method: K = 1, |y 1| = 1 y, Outer = 1, Inner = $\sqrt[3]{y}$, $\int_0^1 2\pi (1 y)(1 \sqrt[3]{y})dy = \boxed{\frac{5\pi}{14}}$
- **6.3.44.** Shell method: K=0, |x|=x, Outer $=\sqrt{r^2-(x-R)^2}$ (use the fact that $(x-R)^2+y^2=r^2$), Innter $=-\sqrt{r^2-(x-R)^2}$, so $\int_{R-r}^{R+r} 2\pi x 2\sqrt{r^2-(x-R)^2} dx=\sqrt{r^2-(x-R)^2}$ (use the substitution u=x-R, and remember what you did in 5.5.73)
- **6.3.46.** Shell method: K=0, |x|=x, Outer $=2\sqrt{R^2-x^2}$ (use the fact that $x^2+y^2=R^2$), Inner =0,

$$\int_{r}^{R} 2\pi x (2\sqrt{R^2 - x^2}) dx = \frac{4\pi}{3} (R^2 - r^2)^{\frac{3}{2}} = \frac{4\pi}{3} \left(\left(\frac{h}{2} \right)^2 \right)^{\frac{3}{2}} = \frac{4\pi}{3} \frac{h^3}{8} = \frac{\pi h^3}{6}$$

(use the substitution $u=R^2-r^2$, and the fact that $r^2+(\frac{h}{2})^2=R^2$ by the Pythagorean theorem)